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XIV. On certain Properties of square numbers and other quadratic forms, with a Table
of odd numbers from 1 to 191, divided into 4, 3 or 2 square numbers, the algebraic
sum of whose roots (positive or negative) may equal 1, by means of which Table all

the odd numbers up to 9503 may be resolved into not exceeding 4 square numbers.

By Sir Freperick Porrock, F.R.S., Lord Chief Baron.
Received, Dec. 20, 1853,—Read, Dec. 22, 1853,—Revised by the Author, Nov. 1854.

SOME years ago, in examining the properties of the triangular or trigonal numbers

n.(n—1)
2 b

0,1, 3, 6, 10, 15, &ec.

I observed that every trigonal number was composed of 4 trigonal numbers, viz.
3 times some prior trigonal number plus the next in the series, either immediately
before or after that prior number ;
thus 45=10410410415

55=154+15+154+10; -
or generally, as all numbers are of the form 2n—1 or of 2n, all trigonal numbers

are of one of the 2 forms, 2n°—», 2n’-}-n,

nt—n n24n
2 — RS
20’ —n=—5 X 34 D)

“and
n?+n

n—n
2 +n= 5 X 3—|——-—2—'

I found also that all the natural numbers in the interval between any two con-
secutive trigonal numbers, might be composed of 4 trigonal numbers, having the sum
of their bases or roots constant, viz. the sum of the roots or bases of the 4 trigonal
numbers which compose the first of the 2 trigonal numbers.

This will be best explained by an example: the roots or bases are placed over the
numbers, and it will be observed their sum is constant in the same interval.
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3 4 4 4 =15
wszg — 36 6 10 10 10
3 3 4 5 15
37 6 6 10 15
2 4 4 5 15
38 3 10 10 15
2 3 5 5 15
39 3 6 15 15
2 3 4 6 15
40 3 6 10 21
1 4 5 5 15
m 1 10 15 15
1 4 4 6 15
42 1 10 10 21
1 3 5 6 15
43 1 6 15 21
2 2 4 i 15
44 3 3 10 28
2 4 5 17
9 "210 =45 10 10 10 15
3 4 5 5 17
46 6 10 15 15
3 4 4 6 17
47 6 10 10 21
3 3 5 6 17
48 6 6 15 21
2 4 b 6 17
49 3 10 15 21
3 3 4 7 17
50 6 6 10 28
2 4 4 7 17
51 3 10 10 28
2 3 5 7 17
59 3 6 15 28
1 4 6 6 17
53 1 10 21 2l
1 4 5 7 17
54 1 10 15 98
10x 11 4 5 5 5 —19
= 10 15 15 15

5 5 5 6
From 55 to 66 (=15, 15, 15, 21) the constant sum of the bases will be 19, and

this may be continued without limit. ‘

If the law by which this can be continued were discovered and proved, it would
furnish the means of proving Fermar's theorems of the polygonal numbers ; but not
being aware of any law by which the series that fills up the intervals could be con-
tinued, I turned my attention to the square numbers as containing (apparently) a
greater variety of theorems, and as being (certainly) of all quadratic forms that which
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is most familiar, and in which calculations or comparisons may be made with the
greatest facility.

Very lately I observed the following property of square numbers :—

If any four square numbers a?, b ¢*, @” have their roots such that by making one
or more positive and the rest negative, the algebraic sum of the roots may equal 1;
then if the roots whose sum is one less than the others be each increased by 1, and
the others be each decreased by 1, the sum of the squares of the roots thus increased
and decreased will be equal to a*+5+c+d*+2. Leta+b—c—d=1,and let ¢ and "
d become c41, d+1, and let @ and b become a—1, b—1, then

(@—1)4(b— 1)+ (c+ 1)+ (d+ 1=+ b4+ d+2 X (—a—b4c+d) +4,
but
2X(—a—b+ct+d)y=-2,
therefore the sum of the squares of the new roots=a*+b*4c*+d*+2. If a—b
—c—d=1, the result is the same, decreasing @ and increasing each of b, c and d by 1.
The theorem is more general (as might have been expected).

THEOREM A.

For if instead of 1 the algebraic sum of the roots be equal to 2n—1,and the nega-
tive roots be numerically increased by » and the positive roots be decreased by =,
the increase in the sum of the squares of the new roots thus formed will be 2n.

Let a+b—c—d=2n—1, then (a—n)’+(b—n)*+(c+n)*+ (d+n)*=a*+b*4+d°
—2an—2bn+2cn+2dn+4n?, but —2an—2bn-+2cn-+2dn=—(2n—1) X 2n=—4n’
-+2n, .. the sum of the squares of the new roots=a*+4 b+ +d*+2n.

The following table shows the result of different algebraic sums of the roots, with
the corresponding increase or decrease of roots and increase of the sum of the squares.

Corresponding increase Increase of

Sum of roots. or decrean of roots. sum of squares.
3 2 4
5 3 6
7 4 8
9 5 10
11 e e e e e s 6 e e 12
&e. e e e e s &ec. e e e e e &e.

There is a similar theorem with respect to the decrease of the sum of the squares.

TraEOREM B.

If a+b—c—d=2n-+1 (instead of 2n—1), then if a and b be each diminished and
¢ and d be increased by =z, the sum of the squares of the new roots will be less by 2,
and (a—n)*+ (b—n)*+ (c+n)*+(d+n)* will equal @+ b*4-c*+d*—2n.

MDCCCLIV, 2s
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And a similar table will show the corresponding decrease of the sum of the squares:

Sum of roots. Increase and decrease. Decrease of sum of squares.
; « o e v 6 o« 1 e e e e 2
b « . 2 e e e e 4
7 3 c e e e e 6
9 e e e e 4 o . . 8
&e. e e e e e &e. e 6 e e e &e.

The use that may be made of these theorems will best appear by an example or two.
51 is composed of 4 square numbers, 25, 16, 9, 1, whose roots are 5, 4, 3, 1.

4 + 3 — 5 — 1 = 1
5 + 3 — 4 — 1 = 3
5 + 4 — 3 — 1 = 5

5 + 4 + 1 — 3 = 7%
Then by Theorem A. square numbers which compose 53, 55, 57, and 59 may be
obtained, and by Theorem B. those which compose 49, 47, and 45 by adding to or
subtracting from the roots ; thus
5 4+4 -3 —-—1=5=2x3—-1,n=3

3 3 3 3 being deducted or added,

2 1 6 4 become the new roots, the sum of whose
squares=57=51-42X3.

54+ 4+1—~3=7=2x%x3+1,n=23

3 3 3 3

2 1 — 2 6 are the new roots, the sum of whose

squares=45=51—2x 3.
Again, 5 5 1 0 are roots of squares which compose 51,
54+54+1 0=11=2X6=—1,7n=2=6
6 6 6 6

1 1 —5 6 the squares of these new roots=63=51
+12 (6142X%6). Also,

5 4+ 5 —1 0=9=2X5—1,n=05
5 5 5 5
0

0 6 5 the squares of these new roots = 61 by
Theorem A.; by Theorem B. the squares which compose 41 and 43 may be found,
and thus the square numbers (not exceeding 4) which compose 51 being given, square
numbers not exceeding 4 may be discovered, which compose 41, 43, and all the inter-
mediate odd numbers up to 63.
This method of obtaining the square numbers that compose a succession of odd
numbers, suggested that if a method similar to what was observed in the trigonal
numbers were adopted as to the square numbers, the series of odd numbers might be
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resolved into square numbers. In the trigonal numbers the successive bases of the
4 trigonal numbers into which the terms of the trigonal series are each divisible, are

0 0 0 1
0 1 1 1
1 1 1 2
1 2 2 2
2 2 2 3
2 3 3 3 &e.

If instead of using these numbers as bases or roots of trigonal numbers they be
squared and added together, they furnish a series (1, 3, 7, 13, 21, 31, &c.) whose
general term is m*-+m-1, or according as m is even or odd, 4n*4-2n4-1: this expres-
sion is manifestly divisible into square numbers whose roots will be either 7, n,n, n-4-1
‘or n—1,n, n,n, and the sum of the roots will be 4n+1, and with reference to integral
quantities will be a maximum. The terms of the series 1, 3,7, 13, &c., furnish steps,
places, or positions at which the process of increasing the sum of the squares might
commence again, and as far as any law of increase is applicable to one term it is
applicable to all. I have therefore called this series 1, 3, 7, 13, &c. the gradation-
series of this system of resolving the odd numbers into square numbers not exceed-
ing 4. ' o
I have prepared a table in which the odd numbers from 1 to 191, respectively,
are divided into square numbers not exceeding 4, the algebraic sum of whose roots
may be made equal to 1.

This table of the odd numbers up to 191 is at the end of the paper; the terms of
the gradation-series (as they occur) are distinctively denoted, and all the sets of roots
of the odd numbers up to 191 are capable of forming 1 as their algebraic sum ; and
by’means of this series any odd number from 4n°+-2n--1 up to 42°+2n--191 inclu-
sive, may be divided into not exceeding 4 square numbers, whatever be the value of .

~ The examination of this series led me to observe a remarkable property of odd
numbers with reference to the square numbers (not exceeding 4) into which they
may be divided, and which may be stated in the following theorem,

Taeorem C.

Every odd number may be divided into square numbers (not exceeding 4), the
algebraic sum of whose roots (positive or negative) will (in some form of the roots)
be equal to every odd number from 1 to the greatest possible sum of the roots, or the
theorem may be stated in a purely algebraical form thus:

If there be 2 equations, »

@+ b4+ d=2n+1
and a+b+c+d=2r+1,
a, b, c, d being each integral or nil, » and r being positive, and » a maximum, then if
2s2



316 SIR F. POLLOCK ON CERTAIN PROPERTIES OF SQUARE NUMBERS, ETC.

any positive integer ' (not greater than r) be assumed, it will always be possible to
satisfy the pair of equations

w=a"+y +*=2n41

wtar+y4z=2r'+1
by integral values (positive, negative, or nil) of w, x, y, .

I now propose to show in what manner the table may be used, so as to divide into
square numbers (not exceeding 4) any odd number from 1 up to 9503, and any odd
number whatever of the form 4n*4-2n-42p<-1, where p is not greater than 95 [95 %
2+1=191].

If 2p4-1=a’+ b+ c*+d°, and if also a4-b+c+d=1 (a, b, c, d being integral num-
bers, positive, negative or nil), in other words, if the odd number 2p+41 be such that
the algebraic sum of the roots of the square numbers (not exceeding 4) which compose
it may be equal to 1, then it will follow that m*+m-1+42p may be resolved into
square numbers (not exceeding 4) the sum of whose roots will equal 2m-+1, for m*4m
41 is of the form 4n°+2n41; let it equal it, and m*+m-+142p=4n>+2n, (a+b
Fc+d) + @+ 0+ H-d*= (nta)*+ (ntb)’ 4 (nt-c)*+ (n+d)* (manifestly 4 square
numbers), and the sum of the roots=4n+ (a4b+c+d)=4n+1=2m+1.

Let the function m*>+m-1 be designated by the notation fm. If every odd num-
ber from 1 up to 2m-+41 can be resolved into (not exceeding) 4 square numbers, the
algebraic sum of whose roots may equal 1, then every odd number from fm to_fm
+2m inclusive may be resolved into 4 square numbers, the sum of whose roots may
equal 2m-1; but the next odd number to fin+2m is f(m-+1), and since f(m-+1) is
resolvable into 4 square numbers, the sum of whose roots=2m-}3; if every odd num-
ber from 1 up to 2m—+1 can be resolved into not exceeding 4 square numbers the
algebraic sum of whose roots=1, then every odd number from 1 up to f(m+1)+42m
is resolvable into 4 square numbers, and f(m-1)+2m=m’+45m-+3.

In the Table the highest odd number 191==2 X 95+ 1, therefore m=95 ; and every
odd number from 1 up to 95°45X 95+43=9503 may be resolved into not exceeding
4 square numbers, by means of the Table, also every odd number of the form 4n°4+2n
+2p-+1, whatever be the value of », provided p be not greater than 95 ; for example,
let it be required to resolve 9301 into 4 square numbers, the next less number of the
form m’+m—1 is 9121=95°495-4+1=4"48"—2'48-+1, 9301=91204181.

181 by the Table is resolvable into

1°4-4*4-8°4107
and —1-4448—10=1 9301 =(48-+1)*+ (48 —4)*+ (48—8)*+ (48+10)?
=49+444-402458%;
so 4n’+n-181 is always resolvable into 4 square numbers, whatever be the value of
n, and the roots of the square numbers will be (nF1), (n1-4), (n+8), (nF10).
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If the following series of equations be assumed,

142d =2q-+1

342d,=2¢+1

742d,=2¢g+1

13+2d,=2¢+1

m*+m-+1+4+2d,_,=2q+1,
and if each of the quantities 2d+41, 2d,+1, 2d,+1, 2d;+1...2d,,_,-+1 can be resolved
into 4 square numbers, the algebraic sum of whose roots=1, then the given odd
number 2¢g+1 may be resolved into successive sets of 4 squares, the sum' of whose
roots will be successively 1, 3, 5, 7...2m+1. Hence an odd number, 291, may be
resolved into 4 square numbers, the sum of whose roots shall be equal to 2p--1, if
upon adding 1 to the difference between 2¢+1 and the (p-41)” term of the gradation-
series, the difference so increased can be resolved into 4 square numbers, the alge-
braic sutn of whose roots=1. If it be required to resolve 37 into 4 squares, the sum
of whose roots shall equal 7=2Xx3-+1, here p=3, the (p+1)* or 4th term of the
gradation-series is 13; 18 is of the form 4:22—2-2-4-1, and it equals 224-2°4224-1*
(2—1)*; the difference between 37 and 14=24, increased by 1=25, 25 =124-224-2?

+42, and the roots+1—2—2+44=1 and 13+424=(242)* =42, 42, 12, — 2°

(2+2)°
(2—1)"
(2—1)°

and +444+41—2=7.

If, therefore, every odd number can be resolved into integral square numbers (not
exceeding 4) whose algebraic sum will equal 1, then every odd number can be
resolved into integral square numbers (not exceeding 4) whose algebraic sum will be
1, 8, 5, &ec. [viz. all the odd numbers up to the maximum].

I propose (in order not to leave the Theorem C. unproved) to show by the proper-
ties of numbers already proved, that every odd number may be resolved into integral
square numbers (not exceeding 4) whose algebraic sum will equal 1.

Every odd number may be represented by 2p-+1 (p being any integer): then by
FermaT's theorem of the polygonal numbers (as proved by Lecenpre, Théorie des
nombres), p must either be a trigonal number, or composed of two or three trigonal
numbers. If it be a trigonal number, then p=gf_%-_€l’ and 2p+1=¢*+¢-1, which
equals 4n*+2n+1, which is divisible into (n+1)% 2’ »*, »*, and n—nFn.t(nt1)=1.
gng+ﬁ;—r, and the sum of any two

trigonal numbers is of the form of a’4a--5* and may be assumed equal to @’+a+-8%,

If p be composed of 2 trigonal numbers, p=

* If 2 numbers be both odd or both even, they may always be represented by a+06 and a—0; if one be odd
and the other even, they may always be represented by a+b+41, a—b or a+b, a—b+1; and if the 2 numbers
be made the bases of trigonal numbers, the sum of the 2 trigonal numbers will always be of the form a2+«
482 or a®+b+ 0%
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therefore 2p+1=2a>+2a4-2b°+1 = (a+1)?, @, b* b*, and the roots (a+1),—a, b,
2
—b,=1. If p be composed of 3 trigonal numbers, then p=a2+a+b2+7—n—§t@ and

2p+1=20"~+2a+420°+m*+m--1, but m*+m-1 is of the form 4n*4-2n-41, whose
four roots (as already seen) are n+1, n, n, n, and if these roots be varied thus,
Fa+nt1

a—n

b+n

b—n,
the squares of these four roots will equal 2a°+2a+ 264 4n*4-2n--1, and the algebraic
sum of these roots obviously may=1. It follows from this, that every possible odd
number may be divided into integral square numbers (not exceeding 4), the algebraic
sum of whose roots=1.

I propose in a future communication to give a different proof of the Theorem C,
and instead of proving the Theorem C. by FErmAT's proposition of the trigonal num-
bers, I shall offer a proof of Frrmar's proposition of the trigonal numbers by the
Theorem C; it is obvious that they are so connected that either may be proved from
the other.

I am not aware that the theorems A, B, or C, or the method above described of
using a gradation-series, have ever been noticed before, and as they appear to add
something (however little) to the theory of numbers, I have ventured to present them
to the attention of the Royal Society.

Nore.—Numbers of the form 2n-2 (even numbers) may be resolved into square
numbers (not exceeding 4), the algebraic sum of whose roots may always equal 2,
and so far they have an analogous property, but they do not possess the analogous
property of being resolvable into roots whose algebraic sum will=2, 4, 6, 8, &c.
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TaBLE of odd numbers and of the Roots of the squares (not exceeding 4) into which

they may be divided, whose algebraic sum may equal 1.

0dd Roots of the Squares into 0dd Roots of the Squares into 0dd Roots of the Squares into
numbers. | which they may be divided numbers. | which they may be divided numbers. | which they may be divided
whose algebraic sum mayequall. whose algebraic sum may equal 1. whose algebraic sum may equal 1.
1 0001 65 2 3 4 6 129 2 5 6 8
3 0111 67 11 47 131 0559
5 001 2 69 1 4 4 6 133 5 6 66
7 1112 71 1 835 6 135 5 5 6 7
9 01 2 2 73 4 4 4 5 137 4 6 6 7
11 011 38 75 3 4 6 5 139 4 5 7 7
13 1222 77 3 4 4 6 141 4 5 6 8
15 1123 79 3356 143 23179
17 0 2 2 3 81 2 4 5 6 145 3 6 6 8
19 01 3 3 83 03 5 7 147 3 5 7 8
2 22 23 85 2 4 4 7 149 2 3 610
23 1 2 38 3 87 2 3 6 7 151 3 6 6 9
25 1 2 2 4 89 0 2 6 7 153 2 2 8 9
27 1 1 3 4 43 4 55 5 155 83 4 79
29 0 2 3 4 93 4 4 5 6 157 6 6 6 7
31 2 3383 95 355 6 159 5 6 7 7
33 2 2 38 4 97 3 4 6 6 161 5 6 6 8
35 1 3 3 4 99 3 4 5 7 163 5 5 7 8
37 1 2 4 4 101 01 6 8 165 4 6 7 8
39 1 23 5 103 2 5 5 7 167 1 2 9 9
41 0 0 4 5 105 2 4 6 7 169 4 6 6 9
43 3 3 38 4 107 1 83 49 171 4 5 7 9
45 2 3 4 4 109 2 4 5 8 173 1 6 610
47 2 8 865 111 55 5 6 175 3 6179
49 2 2 4 5 113 4 5 6 6 177 4 5 610
51 1 8 4 5 115 4 5 5 7 179 3 5 89
53 2 2 8 6 117 4 4 6 7 181 1 4 810
55 1 3 3 6 119 3 5 6 7 183 6 7 7T
57 34414 121 2 2 7 8 185 6 6 7 8
59 3 8 4 6 123 3 6 5 8 187 5 7 7 8
61 2 4 4 5 125 3 4 6 8 189 5 6 8 8
63 2 8 5 6 127 1 3 69 191 5 6 7 9




